Transporting and concentrating vibrational energy to promote isomerization

Nature



  • 1.

    Förster, T. Energiewanderung und Fluoreszenz. Naturwissenschaften 33, 166–175 (1946).

    ADS 
    Article 

    Google Scholar
     




  • 2.

    Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 437, 55–75 (1948).

    Article 

    Google Scholar
     




  • 3.

    Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 4.

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    CAS 
    Article 

    Google Scholar
     




  • 5.

    Berggren, M., Dodabalapur, A., Slusher, R. E. & Bao, Z. Light amplification in organic thin films using cascade energy transfer. Nature 389, 466–469 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 6.

    Kim, J. S., McQuade, D. T., Rose, A., Zhu, Z. G. & Swager, T. M. Directing energy transfer within conjugated polymer thin films. J. Am. Chem. Soc. 123, 11488–11489 (2001).

    CAS 
    Article 

    Google Scholar
     




  • 7.

    Kagan, C. R., Murray, C. B. & Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 8.

    Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 9.

    Corcelli, S. A. & Tully, J. C. Vibrational energy pooling in CO on NaCl(100): methods. J. Chem. Phys. 116, 8079–8092 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 10.

    Zare, R. N. Laser control of chemical reactions. Science 279, 1875–1879 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 11.

    Crim, F. F. Chemical dynamics of vibrationally excited molecules: controlling reactions in gases and on surfaces. Proc. Natl Acad. Sci. USA 105, 12654–12661 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 12.

    Chadwick, H. & Beck, R. D. Quantum state-resolved studies of chemisorption reactions. Annu. Rev. Phys. Chem. 68, 39–61 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 13.

    Utz, A. L. Mode selective chemistry at surfaces. Curr. Opin. Solid State Mater. Sci. 13, 4–12 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 14.

    Juurlink, L. B. F., Killelea, D. R. & Utz, A. L. State-resolved probes of methane dissociation dynamics. Prog. Surf. Sci. 84, 69–134 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 15.

    Crim, F. F. Vibrational state control of bimolecular reactions: discovering and directing the chemistry. Acc. Chem. Res. 32, 877–884 (1999).

    CAS 
    Article 

    Google Scholar
     




  • 16.

    Dünnwald, H. et al. Anharmonic vibration–vibration pumping in nitric oxide by resonant IR-laser irradiation. Chem. Phys. 94, 195–213 (1985).

    Article 

    Google Scholar
     




  • 17.

    Lau, J. A. et al. Observation of an isomerizing double-well quantum system in the condensed phase. Science 367, 175–178 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     




  • 18.

    Chen, L. et al. The Sommerfeld ground-wave limit for a molecule adsorbed at a surface. Science 363, 158–161 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 19.

    Dubost, H. & Charneau, R. Laser studies of vibrational energy transfer and relaxation of CO trapped in solid neon and argon. Chem. Phys. 12, 407–418 (1976).

    CAS 
    Article 

    Google Scholar
     




  • 20.

    Dubost, H. & Charneau, R. Role of vibrational energy migration upon V→V transfer in matrix-isolated CO. Chem. Phys. 41, 329–343 (1979).

    CAS 
    Article 

    Google Scholar
     




  • 21.

    Legay-Sommaire, N. & Legay, F. Observation of a strong vibrational population inversion by CO laser excitation of pure solid carbon monoxide. IEEE J. Quantum Electron. 16, 308–314 (1980).

    ADS 
    Article 

    Google Scholar
     




  • 22.

    Legay-Sommaire, N. & Legay, F. Analysis of the infrared emission and absorption spectra from isotopic CO molecules in solid α-CO. Chem. Phys. 66, 315–325 (1982).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 23.

    Bergman, R. C., Homicz, G. F., Rich, J. W. & Wolk, G. L. 13C and 18O isotope enrichment by vibrational energy exchange pumping of CO. J. Chem. Phys. 78, 1281–1292 (1983).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 24.

    Rich, J. W. & Bergman, R. C. C2 and CN formation by optical pumping of CO/Ar and CO/N2/Ar mixtures at room temperature. Chem. Phys. 44, 53–64 (1979).

    CAS 
    Article 

    Google Scholar
     




  • 25.

    Serdyuchenko, A. et al. Isotope effect in Boudouard disproportionation reaction in optically pumped CO. Chem. Phys. 363, 24–32 (2009).

    CAS 
    Article 

    Google Scholar
     




  • 26.

    Heidberg, J., Suhren, M. & Weiss, H. Growth of CO multilayers on the monolayer adsorbate CO/NaCl(100): a high resolution Fourier-transform infrared study. J. Electron. Spectros. Relat. Phenom. 64–65, 227–234 (1993).

    Article 

    Google Scholar
     




  • 27.

    Chen, L. et al. Ultra-sensitive mid-infrared emission spectrometer with sub-ns temporal resolution. Opt. Express 26, 14859–14868 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 28.

    Chen, L. et al. Mid-infrared laser-induced fluorescence with nanosecond time resolution using a superconducting nanowire single-photon detector: new technology for molecular science. Acc. Chem. Res. 50, 1400–1409 (2017).

    CAS 
    Article 

    Google Scholar
     




  • 29.

    Nesbitt, D. J. & Field, R. W. Vibrational energy flow in highly excited molecules: role of intramolecular vibrational redistribution. J. Phys. Chem. 100, 12735–12756 (1996).

    CAS 
    Article 

    Google Scholar
     




  • 30.

    Chang, H. C., Richardson, H. H. & Ewing, G. E. Epitaxial growth of CO on NaCl(100) studied by infrared spectroscopy. J. Chem. Phys. 89, 7561–7568 (1988).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 31.

    Morse, P. M. Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57–64 (1929).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 32.

    Vegard, L. Structure and luminosity of solid carbon monoxide. Z. Phys. 61, 185–190 (1930).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 33.

    Jiang, G. J., Person, W. B. & Brown, K. G. Absolute infrared intensities and band shapes in pure solid CO and CO in some solid matrices. J. Chem. Phys. 62, 1201–1211 (1975).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 34.

    Dai, D. J. & Ewing, G. E. Vibrational overtone spectroscopy and coupling effects in monolayer CO on NaCl(100). Surf. Sci. 312, 239–249 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    SoftBank Vision Fund is losing Jeff Housenbold, who led investments in DoorDash, OpenDoor and Wag
    Online clothing reseller Poshmark closes up more than 140% on first day of trading
    Monitoring the snap, crackle and pop of the sea
    From Jeep to Maserati, Stellantis to roll out 10 new EV models in 2021
    Known Dog Food Product Kills 70 Dogs, Company Expands Voluntary Recall

    Leave a Reply

    Your email address will not be published. Required fields are marked *