Area-based conservation in the twenty-first century

Nature



  • 1.

    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    ADS 
    CAS 

    Google Scholar
     


  • 2.

    Dudley, N. Guidelines for Applying Protected Area Management Categories (IUCN, 2008).




  • 3.

    Dudley, N. et al. The essential role of other effective area-based conservation measures in achieving big bold conservation targets. Glob. Ecol. Conserv. 15, e00424 (2018).


    Google Scholar
     




  • 4.

    Donald, P. F. et al. The prevalence, characteristics and effectiveness of Aichi Target 11′ s “other effective area-based conservation measures”(OECMs) in Key Biodiversity Areas. Conserv. Lett. 12, 12659 (2019).


    Google Scholar
     


  • 5.

    UN General Assembly. Transforming our World: The 2030 Agenda for Sustainable Development, 21 October 2015. A/RES/70/1 https://www.refworld.org/docid/57b6e3e44.html (accessed 11 November 2019).


  • 6.

    Convention on Biological Diversity. COP 10 Decision X/2: Strategic Plan for Biodiversity 2011–2020. http://www.cbd.int/decision/cop/?id=12268 (2011).


  • 7.

    UNEP-WCMC & IUCN. World Database on Protected Areas (WDPA). https://www.protectedplanet.net/ (UNEP-WCMC, 2019).


  • 8.

    UNEP-WCMC & IUCN. World Database on Other Effective Area-based Conservation Measures (WD-OCEM). https://www.protectedplanet.net/c/other-effective-area-based-conservation-measures (UNEP-WCMC, 2019).




  • 9.

    Lewis, E. et al. Dynamics in the global protected-area estate since 2004. Conserv. Biol. 33, 570–579 (2019).


    Google Scholar
     




  • 10.

    Klein, C. J. et al. Shortfalls in the global protected area network at representing marine biodiversity. Sci. Rep. 5, 17539 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 11.

    Venter, O. et al. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 32, 127–134 (2018).


    Google Scholar
     




  • 12.

    Mouillot, D. et al. Global marine protected areas do not secure the evolutionary history of tropical corals and fishes. Nat. Commun. 7, 10359 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 13.

    Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).


    Google Scholar
     




  • 14.

    Christie, P. et al. Why people matter in ocean governance: incorporating human dimensions into large-scale marine protected areas. Mar. Policy 84, 273–284 (2017).


    Google Scholar
     




  • 15.

    Zafra-Calvo, N. et al. Progress toward equitably managed protected areas in Aichi target 11: a global survey. Bioscience 69, 191–197 (2019). This is the first large review of how well protected areas satisfy social equity metrics.

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 16.

    Juffe-Bignoli, D. et al. Achieving Aichi biodiversity target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquat. Conserv. 26, 133–151 (2016).


    Google Scholar
     




  • 17.

    Maron, M., Simmonds, J. S. & Watson, J. E. M. Bold nature retention targets are essential for the global environment agenda. Nat. Ecol. Evol. 2, 1194–1195 (2018).


    Google Scholar
     




  • 18.

    Geldmann, J. et al. Changes in protected area management effectiveness over time: a global analysis. Biol. Conserv. 191, 692–699 (2015).


    Google Scholar
     




  • 19.

    Di Minin, E. & Toivonen, T. Global protected area expansion: creating more than paper parks. Bioscience 65, 637–638 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 20.

    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017). This study compiles four years of data to assess capacity shortfalls and biodiversity outcomes from the management of 589 marine protected areas.

    ADS 
    CAS 

    Google Scholar
     




  • 21.

    Coad, L. et al. Widespread shortfalls in protected area resourcing undermine efforts to conserve biodiversity. Front. Ecol. Environ. 17, 259–264 (2019).


    Google Scholar
     




  • 22.

    Visconti, P. et al. Protected area targets post-2020. Science 364, 239–241 (2019).

    ADS 
    CAS 

    Google Scholar
     




  • 23.

    Barnes, M. D., Glew, L., Wyborn, C. & Craigie, I. D. Prevent perverse outcomes from global protected area policy. Nat. Ecol. Evol. 2, 759–762 (2018).


    Google Scholar
     


  • 24.

    IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES secretariat, 2019). This report assesses the status of biodiversity and ecosystem services, their impact on human well-being and the effectiveness of conservation interventions.




  • 25.

    Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 26.

    Noss, R. F. et al. Bolder thinking for conservation. Conserv. Biol. 26, 1–4 (2012).


    Google Scholar
     


  • 27.

    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (Liveright, 2016).




  • 28.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).


    Google Scholar
     




  • 29.

    Bull, J. W. et al. Net positive outcomes for nature. Nat. Ecol. Evol. 4, 4–7 (2020).


    Google Scholar
     




  • 30.

    Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).


    Google Scholar
     




  • 31.

    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 32.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).


    Google Scholar
     


  • 33.

    UNEP-WCMC, IUCN & NGS. Protected Planet Report 2018 (UNEP-WCMC, IUCN and NGS, 2018). A biennial publication that reviews progress toward protected areas targets and goals.




  • 34.

    Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).


    Google Scholar
     


  • 35.

    IUCN. The IUCN Red List of Threatened Species. Version 2019-2 http://www.iucnredlist.org (accessed 10 September 2019) (2019).


  • 36.

    IUCN. A Global Standard for the Identification of Key Biodiversity Areas. Version 1.0 (IUCN, 2016).


  • 37.

    BirdLife International. World Database of Key Biodiversity Areas. www.keybiodiversityareas.org (accessed 20 June 2019) (2019).




  • 38.

    Jones, K. R. et al. The location and protection status of Earth’s diminishing marine wilderness. Curr. Biol. 28, 2506–2512 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 39.

    Allan, J. R., Venter, O. & Watson, J. E. M. Temporally inter-comparable maps of terrestrial wilderness and the last of the wild. Sci. Data 4, 170187 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 40.

    Watson, J. E. M. et al. The exceptional value of intact forest ecosystems. Nat. Ecol. Evol. 2, 599–610 (2018).


    Google Scholar
     




  • 41.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS 

    Google Scholar
     




  • 42.

    Martin, T. G. & Watson, J. E. M. Intact ecosystems provide best defence against climate change. Nat. Clim. Chang. 6, 122–124 (2016).

    ADS 

    Google Scholar
     




  • 43.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    ADS 
    CAS 

    Google Scholar
     




  • 44.

    Soto-Navarro, C. et al. Mapping co-benefits for carbon storage and biodiversity to inform conservation policy and action. Phil. Trans. R. Soc. Lond. B 375, 20190128 (2020). This study combines multiple datasets to produce a new high-resolution map of global above- and belowground carbon stored in biomass and soil.

    CAS 

    Google Scholar
     




  • 45.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    ADS 
    CAS 

    Google Scholar
     




  • 46.

    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochem. Cycles 31, 535–555 (2017).

    ADS 
    CAS 

    Google Scholar
     




  • 47.

    Laws, E. A., D’Sa, E. & Naik, P. Simple equations to estimate ratios of new or export production to total production from satellite-derived estimates of sea surface temperature and primary production. Limnol. Oceanogr. Methods 9, 593–601 (2011).


    Google Scholar
     




  • 48.

    DeVries, T., Primeau, F. & Deutsch, C. The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39, L13601 (2012).

    ADS 

    Google Scholar
     




  • 49.

    Henson, S. A., Sanders, R. & Madsen, E. Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean. Glob. Biogeochem. Cycles 26, GB1028 (2012).

    ADS 

    Google Scholar
     




  • 50.

    Roshan, S. & DeVries, T. Efficient dissolved organic carbon production and export in the oligotrophic ocean. Nat. Commun. 8, 2036 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 51.

    Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans 112, C10011 (2007).

    ADS 

    Google Scholar
     




  • 52.

    Magris, R. A. et al. Biologically representative and well-connected marine reserves enhance biodiversity persistence in conservation planning. Conserv. Lett. 11, e12439 (2018).


    Google Scholar
     




  • 53.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

    ADS 
    CAS 

    Google Scholar
     




  • 54.

    Harrison, H. B. et al. Larval export from marine reserves and the recruitment benefit for fish and fisheries. Curr. Biol. 22, 1023–1028 (2012).

    CAS 

    Google Scholar
     




  • 55.

    Johnson, D. W., Christie, M. R., Pusack, T. J., Stallings, C. D. & Hixon, M. A. Integrating larval connectivity with local demography reveals regional dynamics of a marine metapopulation. Ecology 99, 1419–1429 (2018).


    Google Scholar
     




  • 56.

    Saura, S., Bastin, L., Battistella, L., Mandrici, A. & Dubois, G. Protected areas in the world’s ecoregions: how well connected are they? Ecol. Indic. 76, 144–158 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 57.

    Saura, S. et al. Global trends in protected area connectivity from 2010 to 2018. Biol. Conserv. 238, 108183 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 58.

    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 8634 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 59.

    Bergseth, B. J., Gurney, G. G., Barnes, M. L., Arias, A. & Cinner, J. E. Addressing poaching in marine protected areas through voluntary surveillance and enforcement. Nat. Sustain. 1, 421–426 (2018). This study uses a citizen science approach to estimate poaching rates inside 55 marine protected areas spanning seven countries.


    Google Scholar
     




  • 60.

    Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    CAS 

    Google Scholar
     




  • 61.

    Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).


    Google Scholar
     




  • 62.

    Zupan, M. et al. Marine partially protected areas: drivers of ecological effectiveness. Front. Ecol. Environ. 16, 381–387 (2018).


    Google Scholar
     




  • 63.

    Spracklen, B. D., Kalamandeen, M., Galbraith, D., Gloor, E. & Spracklen, D. V. A global analysis of deforestation in moist tropical forest protected areas. PLoS ONE 10, e0143886 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 64.

    Herrera, D., Pfaff, A. & Robalino, J. Impacts of protected areas vary with the level of government: comparing avoided deforestation across agencies in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 116, 14916–14925 (2019).

    CAS 

    Google Scholar
     


  • 65.

    Negret, P. J. et al. Effects of spatial autocorrelation and sampling design on estimates of protected area effectiveness. Conserv. Biol. https://doi.org/10.1111/cobi.13522 (2020).




  • 66.

    White, T. D. et al. Assessing the effectiveness of a large marine protected area for reef shark conservation. Biol. Conserv. 207, 64–71 (2017).


    Google Scholar
     


  • 67.

    Giakoumi, S. & Pey, A. Assessing the effects of marine protected areas on biological invasions: a global review. Front. Mar. Sci. 4, 49 (2017).




  • 68.

    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA, 116, 23209–23215 (2019).

    ADS 
    CAS 

    Google Scholar
     




  • 69.

    Gray, C. L. et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 7, 12306 (2016). This controlled study shows how biodiversity outcomes from protected area management are mediated by different classes of land use.

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 70.

    Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 2347 (2013).

    ADS 

    Google Scholar
     




  • 71.

    Speed, C. W., Cappo, M. & Meekan, M. G. Evidence for rapid recovery of shark populations within a coral reef marine protected area. Biol. Conserv. 220, 308–319 (2018).


    Google Scholar
     




  • 72.

    Caselle, J. E., Rassweiler, A., Hamilton, S. L. & Warner, R. R. Recovery trajectories of kelp forest animals are rapid yet spatially variable across a network of temperate marine protected areas. Sci. Rep. 5, 14102 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 73.

    Emslie, M. J. et al. Expectations and outcomes of reserve network performance following re-zoning of the Great Barrier Reef marine park. Curr. Biol. 25, 983–992 (2015).

    CAS 

    Google Scholar
     




  • 74.

    Campbell, S. J., Edgar, G. J., Stuart-Smith, R. D., Soler, G. & Bates, A. E. Fishing-gear restrictions and biomass gains for coral reef fishes in marine protected areas. Conserv. Biol. 32, 401–410 (2018).


    Google Scholar
     




  • 75.

    Mumby, P. J. et al. Trophic cascade facilitates coral recruitment in a marine reserve. Proc. Natl Acad. Sci. USA 104, 8362–8367 (2007).

    ADS 
    CAS 

    Google Scholar
     




  • 76.

    Boaden, A. E. & Kingsford, M. J. Predators drive community structure in coral reef fish assemblages. Ecosphere 6, art46 (2015).


    Google Scholar
     




  • 77.

    Lamb, J. B., Williamson, D. H., Russ, G. R. & Willis, B. L. Protected areas mitigate diseases of reef-building corals by reducing damage from fishing. Ecology 96, 2555–2567 (2015).


    Google Scholar
     




  • 78.

    Naidoo, R. et al. Evaluating the impacts of protected areas on human well-being across the developing world. Sci. Adv. 5, eaav3006 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 79.

    Zafra-Calvo, N. et al. Towards an indicator system to assess equitable management in protected areas. Biol. Conserv. 211, 134–141 (2017).


    Google Scholar
     




  • 80.

    Oldekop, J. A., Holmes, G., Harris, W. E. & Evans, K. L. A global assessment of the social and conservation outcomes of protected areas. Conserv. Biol. 30, 133–141 (2016).

    CAS 

    Google Scholar
     


  • 81.

    Giakoumi, S. et al. Revisiting “success” and “failure” of marine protected areas: a conservation scientist perspective. Front. Mar. Sci. 5, 223 (2018).




  • 82.

    Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).

    ADS 
    CAS 

    Google Scholar
     




  • 83.

    Ban, N. C. et al. Well-being outcomes of marine protected areas. Nat. Sustain. 2, 524–532 (2019).


    Google Scholar
     




  • 84.

    Corrigan, C. et al. Quantifying the contribution to biodiversity conservation of protected areas governed by indigenous peoples and local communities. Biol. Conserv. 227, 403–412 (2018).


    Google Scholar
     




  • 85.

    Schleicher, J., Peres, C. A., Amano, T., Llactayo, W. & Leader-Williams, N. Conservation performance of different conservation governance regimes in the Peruvian Amazon. Sci. Rep. 7, 11318 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 86.

    Hoffmann, M. et al. The difference conservation makes to extinction risk of the world’s ungulates. Conserv. Biol. 29, 1303–1313 (2015).


    Google Scholar
     




  • 87.

    Watson, J. E. M. et al. Set a global target for ecosystems. Nature 578, 360–362 (2020).

    ADS 
    CAS 

    Google Scholar
     


  • 88.

    Stolton, S., Redford, K. H. & Dudley, N. The Futures of Privately Protected Areas (IUCN, 2014).


  • 89.

    IUCN WCPA. Guidelines for Recognising and Reporting Other Effective Area-based Conservation Measures (IUCN, 2019).




  • 90.

    Shabtay, A., Portman, M. E., Manea, E. & Gissi, E. Promoting ancillary conservation through marine spatial planning. Sci. Total Environ. 651, 1753–1763 (2019).

    ADS 
    CAS 

    Google Scholar
     




  • 91.

    Banks-Leite, C. et al. Using ecological thresholds to evaluate the costs and benefits of set-asides in a biodiversity hotspot. Science 345, 1041–1045 (2014).

    ADS 
    CAS 

    Google Scholar
     




  • 92.

    Schuster, R., Germain, R. R., Bennett, J. R., Reo, N. J. & Arcese, P. Vertebrate biodiversity on indigenous-managed lands in Australia, Brazil, and Canada equals that in protected areas. Environ. Sci. Policy 101, 1–6 (2019).


    Google Scholar
     




  • 93.

    Bennett, N. J. & Dearden, P. From measuring outcomes to providing inputs: governance, management, and local development for more effective marine protected areas. Mar. Policy 50, 96–110 (2014).


    Google Scholar
     




  • 94.

    Suchley, A. & Alvarez-Filip, L. Local human activities limit marine protection efficacy on Caribbean coral reefs. Conserv. Lett. 11, e12571 (2018).


    Google Scholar
     




  • 95.

    Cook, C. N., Valkan, R. S., Mascia, M. B. & McGeoch, M. A. Quantifying the extent of protected-area downgrading, downsizing, and degazettement in Australia. Conserv. Biol. 31, 1039–1052 (2017).


    Google Scholar
     




  • 96.

    Qin, S. et al. Protected area downgrading, downsizing, and degazettement as a threat to iconic protected areas. Conserv. Biol. 33, 1275–1285 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 97.

    Forrest, J. L. et al. Tropical deforestation and carbon emissions from protected area downgrading, downsizing, and degazettement (PADDD). Conserv. Lett. 8, 153–161 (2015).


    Google Scholar
     




  • 98.

    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881–886 (2019). This study compiled data that are available globally on PADDD events.

    ADS 
    CAS 

    Google Scholar
     




  • 99.

    Roberts, K. E., Valkan, R. S. & Cook, C. N. Measuring progress in marine protection: a new set of metrics to evaluate the strength of marine protected area networks. Biol. Conserv. 219, 20–27 (2018).


    Google Scholar
     




  • 100.

    De Vos, A., Clements, H. S., Biggs, D. & Cumming, G. S. The dynamics of proclaimed privately protected areas in South Africa over 83 years. Conserv. Lett. 12, e12644 (2019).


    Google Scholar
     




  • 101.

    Costelloe, B. et al. Global biodiversity indicators reflect the modeled impacts of protected area policy change. Conserv. Lett. 9, 14–20 (2016).


    Google Scholar
     




  • 102.

    Pringle, R. M. Upgrading protected areas to conserve wild biodiversity. Nature 546, 91–99 (2017).

    ADS 
    CAS 

    Google Scholar
     




  • 103.

    Kuempel, C. D., Adams, V. M., Possingham, H. P. & Bode, M. Bigger or better: the relative benefits of protected area network expansion and enforcement for the conservation of an exploited species. Conserv. Lett. 11, e12433 (2018).


    Google Scholar
     




  • 104.

    Adams, V. M., Barnes, M. & Pressey, R. L. Shortfalls in conservation evidence: moving from ecological effects of interventions to policy evaluation. One Earth 1, 62–75 (2019).


    Google Scholar
     




  • 105.

    Coad, L. et al. Measuring impact of protected area management interventions: current and future use of the global database of protected area management effectiveness. Phil. Trans. R. Soc. Lond. B 370, 20140281 (2015).


    Google Scholar
     




  • 106.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    ADS 
    CAS 

    Google Scholar
     




  • 107.

    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 108.

    Geldmann, J., Joppa, L. N. & Burgess, N. D. Mapping change in human pressure globally on land and within protected areas. Conserv. Biol. 28, 1604–1616 (2014).


    Google Scholar
     




  • 109.

    Wilkie, D. S., Bennett, E. L., Peres, C. A. & Cunningham, A. A. The empty forest revisited. Ann. NY Acad. Sci. 1223, 120–128 (2011).

    ADS 

    Google Scholar
     




  • 110.

    Volenec, Z. M. & Dobson, A. P. Conservation value of small reserves. Conserv. Biol. 34, 66–79 (2020).


    Google Scholar
     




  • 111.

    Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).


    Google Scholar
     




  • 112.

    Maron, M., Rhodes, J. R. & Gibbons, P. Calculating the benefit of conservation actions. Conserv. Lett. 6, 359–367 (2013).


    Google Scholar
     




  • 113.

    Schleicher, J. et al. Statistical matching for conservation science. Conserv. Biol. 34, 538–549 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 114.

    Ferraro, P. J. Counterfactual thinking and impact evaluation in environmental policy. New Dir. Eval. 2009, 75–84 (2009).


    Google Scholar
     




  • 115.

    Chandler, M. et al. Contribution of citizen science towards international biodiversity monitoring. Biol. Conserv. 213, 280–294 (2017).


    Google Scholar
     


  • 116.

    Convention on Biological Diversity. Long-Term Strategic Directions to the 2050 Vision for Biodiversity, Approaches to Living in Harmony with Nature and Preparation for the Post-2020 Global Biodiversity Framework. www.cbd.int/decision/cop?id=12268 (2018).


  • 117.

    Secretariat of the Convention on Biological Diversity. Global Biodiversity Outlook 4 (Secretariat of the Convention on Biological Diversity, 2014).




  • 118.

    McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012).

    ADS 
    CAS 

    Google Scholar
     




  • 119.

    Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, e1002074 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     




  • 120.

    Waldron, A. et al. Reductions in global biodiversity loss predicted from conservation spending. Nature 551, 364–367 (2017).

    ADS 
    CAS 

    Google Scholar
     


  • 121.

    Murray, K. A., Allen, T., Loh, E., Machalaba, C. & Daszak, P. Emerging Viral Zoonoses from Wildlife Associated with Animal-Based Food Systems: Risks and Opportunities (Springer, 2016).


  • 122.

    Dobson, A.P. et al. Ecology and economics for pandemic prevention. Science 369, 379–381 (2020). 




  • 123.

    Burmester, B. Upgrading or unhelpful? Defiant corporate support for a marine protected area. Mar. Policy 63, 206–212 (2016).


    Google Scholar
     




  • 124.

    Larson, E. R., Howell, S., Kareiva, P. & Armsworth, P. R. Constraints of philanthropy on determining the distribution of biodiversity conservation funding. Conserv. Biol. 30, 206–215 (2016).


    Google Scholar
     




  • 125.

    Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2019).


    Google Scholar
     




  • 126.

    Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. 6, eaay0814 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 127.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

    ADS 

    Google Scholar
     




  • 128.

    Bruno, J. F. et al. Climate change threatens the world’s marine protected areas. Nat. Clim. Chang. 8, 499–503 (2018).

    ADS 

    Google Scholar
     




  • 129.

    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 130.

    Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Chang. 8, 718–722 (2018).

    ADS 

    Google Scholar
     


  • 131.

    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. 4, 158 (2017).




  • 132.

    Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. Incorporating climate change into spatial conservation prioritisation: a review. Biol. Conserv. 194, 121–130 (2016).


    Google Scholar
     




  • 133.

    Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. Camb. Philos. Soc. 90, 1215–1247 (2015).


    Google Scholar
     




  • 134.

    Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941 (2017).


    Google Scholar
     




  • 135.

    van Kerkhoff, L. et al. Towards future-oriented conservation: managing protected areas in an era of climate change. Ambio 48, 699–713 (2019).


    Google Scholar
     




  • 136.

    Ling, S. D. & Johnson, C. R. Marine reserves reduce risk of climate-driven phase shift by reinstating size- and habitat-specific trophic interactions. Ecol. Appl. 22, 1232–1245 (2012).

    CAS 

    Google Scholar
     




  • 137.

    Maxwell, S. L., Venter, O., Jones, K. R. & Watson, J. E. M. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning. Ann. NY Acad. Sci. 1355, 98–116 (2015).

    ADS 

    Google Scholar
     




  • 138.

    Bennett, J. R. et al. When to monitor and when to act: value of information theory for multiple management units and limited budgets. J. Appl. Ecol. 55, 2102–2113 (2018).


    Google Scholar
     




  • 139.

    Burgass, M. J., Halpern, B. S., Nicholson, E. & Milner-Gulland, E. J. Navigating uncertainty in environmental composite indicators. Ecol. Indic. 75, 268–278 (2017).


    Google Scholar
     




  • 140.

    Bennett, J. R. et al. Polar lessons learned: long-term management based on shared threats in Arctic and Antarctic environments. Front. Ecol. Environ. 13, 316–324 (2015).


    Google Scholar
     




  • 141.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    CAS 

    Google Scholar
     




  • 142.

    Bai, Y. et al. Developing China’s ecological redline policy using ecosystem services assessments for land use planning. Nat. Commun. 9, 3034 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 143.

    Hughes, A. C. Understanding and minimizing environmental impacts of the belt and road initiative. Conserv. Biol. 33, 883–894 (2019).


    Google Scholar
     




  • 144.

    Alamgir, M. et al. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Sci. Rep. 9, 140 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 145.

    Azevedo, A. A. et al. Limits of Brazil’s forest code as a means to end illegal deforestation. Proc. Natl Acad. Sci. USA 114, 7653–7658 (2017).

    ADS 
    CAS 

    Google Scholar
     




  • 146.

    Simmonds, J. S. et al. Moving from biodiversity offsets to a target-based approach for ecological compensation. Conserv. Lett. 13, e12695 (2020).


    Google Scholar
     




  • 147.

    Spalding, M. D., Agostini, V. N., Rice, J. & Grant, S. M. Pelagic provinces of the world: a biogeographic classification of the world’s surface pelagic waters. Ocean Coast. Manage. 60, 19–30 (2012).


    Google Scholar
     


  • 148.

    NatureServe. Bird Species Distribution Maps of the World (BirdLife International, 2018).




  • 149.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).


    Google Scholar
     


  • 150.

    Pauly, D. et al. Sea Around Us Concepts, Design and Data. www.seaaroundus.org (2020).




  • 151.

    Ferraro, P. J. & Pressey, R. L. Measuring the difference made by conservation initiatives: protected areas and their environmental and social impacts. Phil. Trans. R. Soc. Lond. B 370, 20140270 (2015).


    Google Scholar
     




  • 152.

    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).


    Google Scholar
     

  • Products You May Like

    Articles You May Like

    New Study Explores Cooperation in Male Lions in Gir Forest in India
    Wildfires Cause Negative Effects From Worsening Smoke Pollution
    One underdog sector is beating the market this month, but two traders stand divided on its prospects
    Space Force plans big reveals on its first anniversary
    Ant Group wins approval from Chinese regulators for the Hong Kong leg of its blockbuster IPO

    Leave a Reply

    Your email address will not be published. Required fields are marked *