Amygdala inhibitory neurons as loci for translation in emotional memories

Nature



  • 1.

    Fendt, M. & Fanselow, M. S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).

    CAS 
    Article 

    Google Scholar
     


  • 2.

    Pavlov, I. P. Conditioned Reflexes: an Investigation of the Physiological Activity of the Cerebral Cortex (Oxford Univ. Press, 1927)




  • 3.

    Rescorla, R. A. Pavlovian conditioned inhibition. Psychol. Bull. 72, 77–94 (1969).

    Article 

    Google Scholar
     




  • 4.

    Christianson, J. P. et al. Inhibition of fear by learned safety signals: a mini-symposium review. J. Neurosci. 32, 14118–14124 (2012).

    CAS 
    Article 

    Google Scholar
     




  • 5.

    Jovanovic, T. et al. Impaired fear inhibition is a biomarker of PTSD but not depression. Depress. Anxiety 27, 244–251 (2010).

    Article 

    Google Scholar
     




  • 6.

    Wilensky, A. E., Schafe, G. E., Kristensen, M. P. & LeDoux, J. E. Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J. Neurosci. 26, 12387–12396 (2006).

    CAS 
    Article 

    Google Scholar
     




  • 7.

    Ciocchi, S. et al. Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468, 277–282 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 8.

    Han, S., Soleiman, M. T., Soden, M. E., Zweifel, L. S. & Palmiter, R. D. Elucidating an affective pain circuit that creates a threat memory. Cell 162, 363–374 (2015).

    CAS 
    Article 

    Google Scholar
     




  • 9.

    Haubensak, W. et al. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468, 270–276 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 10.

    Shrestha, P. et al. Cell-type-specific drug-inducible protein synthesis inhibition demonstrates that memory consolidation requires rapid neuronal translation. Nat. Neurosci. 23, 281–292 (2020).

    CAS 
    Article 

    Google Scholar
     




  • 11.

    Kandel, E. R., Dudai, Y. & Mayford, M. R. The molecular and systems biology of memory. Cell 157, 163–186 (2014).

    CAS 
    Article 

    Google Scholar
     




  • 12.

    Klann, E. & Dever, T. E. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat. Rev. Neurosci. 5, 931–942 (2004).

    CAS 
    Article 

    Google Scholar
     




  • 13.

    Costa-Mattioli, M. et al. eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. Cell 129, 195–206 (2007).

    CAS 
    Article 

    Google Scholar
     




  • 14.

    Kats, I. R. & Klann, E. Translating from cancer to the brain: regulation of protein synthesis by eIF4F. Learn. Mem. 26, 332–342 (2019).

    CAS 
    Article 

    Google Scholar
     




  • 15.

    Sidrauski, C., McGeachy, A. M., Ingolia, N. T. & Walter, P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife 4, e05033 (2015).

    Article 

    Google Scholar
     




  • 16.

    Thoreen, C. C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 17.

    Li, H. et al. Experience-dependent modification of a central amygdala fear circuit. Nat. Neurosci. 16, 332–339 (2013).

    CAS 
    Article 

    Google Scholar
     




  • 18.

    Fadok, J. P. et al. A competitive inhibitory circuit for selection of active and passive fear responses. Nature 542, 96–100 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 19.

    Yu, K., Garcia da Silva, P., Albeanu, D. F. & Li, B. Central amygdala somatostatin neurons gate passive and active defensive behaviors. J. Neurosci. 36, 6488–6496 (2016).

    CAS 
    Article 

    Google Scholar
     




  • 20.

    Lin, C.-J. et al. Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Rep. 1, 325–333 (2012).

    CAS 
    Article 

    Google Scholar
     




  • 21.

    Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    CAS 
    Article 

    Google Scholar
     




  • 22.

    Gorkiewicz, T., Balcerzyk, M., Kaczmarek, L. & Knapska, E. Matrix metalloproteinase 9 (MMP-9) is indispensable for long term potentiation in the central and basal but not in the lateral nucleus of the amygdala. Front. Cell. Neurosci. 9, 73 (2015).

    Article 

    Google Scholar
     




  • 23.

    Botta, P. et al. Regulating anxiety with extrasynaptic inhibition. Nat. Neurosci. 18, 1493–1500 (2015).

    CAS 
    Article 

    Google Scholar
     




  • 24.

    Guettier, J.-M. et al. A chemical-genetic approach to study G protein regulation of beta cell function in vivo. Proc. Natl Acad. Sci. USA 106, 19197–19202 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 25.

    Costa-Mattioli, M. et al. Translational control of hippocampal synaptic plasticity and memory by the eIF2α kinase GCN2. Nature 436, 1166–1173 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 26.

    Zhu, P. J. et al. Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. Cell 147, 1384–1396 (2011).

    CAS 
    Article 

    Google Scholar
     




  • 27.

    Banko, J. L. et al. Behavioral alterations in mice lacking the translation repressor 4E-BP2. Neurobiol. Learn. Mem. 87, 248–256 (2007).

    CAS 
    Article 

    Google Scholar
     




  • 28.

    Hoeffer, C. A. et al. Inhibition of the interactions between eukaryotic initiation factors 4E and 4G impairs long-term associative memory consolidation but not reconsolidation. Proc. Natl Acad. Sci. USA 108, 3383–3388 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     


  • 29.

    Sharma, V. et al. eIF2α controls memory consolidation via excitatory and somatostatin neurons. Nature https://doi.org/10.1038/s41586-020-2805-8 (2020).




  • 30.

    Laxmi, T. R., Stork, O. & Pape, H.-C. Generalization of conditioned fear and its behavioral expression in mice. Behav. Brain Res. 145, 89–98 (2003).

    Article 

    Google Scholar
     




  • 31.

    Ghosh, S. & Chattarji, S. Neuronal encoding of the switch from specific to generalized fear. Nat. Neurosci. 18, 112–120 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    IMF reveals 2021 forecasts for oil prices and the Middle East economy
    Google sued by DOJ in antitrust case over search dominance
    BepiColombo Space Probe Makes First Venus Fly-by on Way to Mercury
    Pentagon has not shown COVID stimulus helps small businesses, says HASC chairman
    Netflix loses the battle, but it’s still on target to win Wall Street’s war

    Leave a Reply

    Your email address will not be published. Required fields are marked *